Maximum lilkelihood estimation in the $\beta$-model
نویسندگان
چکیده
We study maximum likelihood estimation for the statistical model for both directed and undirected random graph models in which the degree sequences are minimal sufficient statistics. In the undirected case, the model is known as the beta model. We derive necessary and sufficient conditions for the existence of the MLE that are based on the polytope of degree sequences. We characterize in a combinatorial fashion sample points leading to a nonexistent MLE, and non-estimability of the probability parameters under a nonexistent MLE. We formulate conditions that guarantee that the MLE exists with probability tending to one as the number nodes increases. We illustrate our approach on other random graph models for networks, such as the Rasch model, the Bradley-Terry model and the more general p1 model of Holland and Leinhardt (1981).
منابع مشابه
Maximum Lilkelihood and Restricted Maximum Likelihood Estimation for a Class of Gaussian Markov Random Fields Maximum Likelihood and Restricted Maximum Likelihood Estimation for a Class of Gaussian Markov Random Fields
متن کامل
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011